
Practical Privacy-Preserving
Authentication for SSH

Lawrence Roy
Stanislav Lyakhov
Yeongjin Jang
Mike Rosulek

Oregon State University

NIST Crypto Reading Club
ia.cr/2022/740

2022-08-23

https://ia.cr/2022/740


SSH client SSH server
should I authenticate

with pub key 6c6c6568...?

no

should I authenticate
with pub key 73616664...?

no

...

yes

signature

problem: server can �ngerprint client:
I refuse all advertisements⇒ learn all keys

I can con�gure client to send only “correct” key

problem: client can probe server:
I o�er someone else’s pub key, observe response
I pre-emptive signatures possible (in principle)

problem: server sees which key was used:
I and can prove it! ⇒ authentication not deniable
I fundamental to protocol

problem: server can act as honeypot:
I accept any key, even ones never seen before
I fundamental to protocol



SSH client SSH server
should I authenticate

with pub key 6c6c6568...?

no

should I authenticate
with pub key 73616664...?

no

...

yes

signature

problem: server can �ngerprint client:
I refuse all advertisements⇒ learn all keys

I can con�gure client to send only “correct” key

problem: client can probe server:
I o�er someone else’s pub key, observe response
I pre-emptive signatures possible (in principle)

problem: server sees which key was used:
I and can prove it! ⇒ authentication not deniable
I fundamental to protocol

problem: server can act as honeypot:
I accept any key, even ones never seen before
I fundamental to protocol



SSH client SSH server
should I authenticate

with pub key 6c6c6568...?

no

should I authenticate
with pub key 73616664...?

no

...

yes

signature

problem: server can �ngerprint client:
I refuse all advertisements⇒ learn all keys

I can con�gure client to send only “correct” key

problem: client can probe server:
I o�er someone else’s pub key, observe response
I pre-emptive signatures possible (in principle)

problem: server sees which key was used:
I and can prove it! ⇒ authentication not deniable
I fundamental to protocol

problem: server can act as honeypot:
I accept any key, even ones never seen before
I fundamental to protocol



SSH client SSH server
should I authenticate

with pub key 6c6c6568...?

no

should I authenticate
with pub key 73616664...?

no

...

yes

signature

problem: server can �ngerprint client:
I refuse all advertisements⇒ learn all keys

I can con�gure client to send only “correct” key

problem: client can probe server:
I o�er someone else’s pub key, observe response
I pre-emptive signatures possible (in principle)

problem: server sees which key was used:
I and can prove it! ⇒ authentication not deniable
I fundamental to protocol

problem: server can act as honeypot:
I accept any key, even ones never seen before
I fundamental to protocol



SSH client SSH server
should I authenticate

with pub key 6c6c6568...?

no

should I authenticate
with pub key 73616664...?

no

...

yes

signature

problem: server can �ngerprint client:
I refuse all advertisements⇒ learn all keys

I can con�gure client to send only “correct” key

problem: client can probe server:
I o�er someone else’s pub key, observe response
I pre-emptive signatures possible (in principle)

problem: server sees which key was used:
I and can prove it! ⇒ authentication not deniable
I fundamental to protocol

problem: server can act as honeypot:
I accept any key, even ones never seen before
I fundamental to protocol



SSH client SSH server
should I authenticate

with pub key 6c6c6568...?

no

should I authenticate
with pub key 73616664...?

no

...

yes

signature

problem: server can �ngerprint client:
I refuse all advertisements⇒ learn all keys

I can con�gure client to send only “correct” key

problem: client can probe server:
I o�er someone else’s pub key, observe response
I pre-emptive signatures possible (in principle)

problem: server sees which key was used:
I and can prove it! ⇒ authentication not deniable
I fundamental to protocol

problem: server can act as honeypot:
I accept any key, even ones never seen before
I fundamental to protocol

Filippo Valsorda https://words.filippo.io/ssh-who
ami-filippo-io/

https://words.filippo.io/ssh-whoami-filippo-io/


SSH client SSH server
should I authenticate

with pub key 6c6c6568...?

no

should I authenticate
with pub key 73616664...?

no

...

yes

signature

problem: server can �ngerprint client:
I refuse all advertisements⇒ learn all keys

I can con�gure client to send only “correct” key

problem: client can probe server:
I o�er someone else’s pub key, observe response
I pre-emptive signatures possible (in principle)

problem: server sees which key was used:
I and can prove it! ⇒ authentication not deniable
I fundamental to protocol

problem: server can act as honeypot:
I accept any key, even ones never seen before
I fundamental to protocol



SSH client SSH server
should I authenticate

with pub key 6c6c6568...?

no

should I authenticate
with pub key 73616664...?

no

...

yes

signature

problem: server can �ngerprint client:
I refuse all advertisements⇒ learn all keys

I can con�gure client to send only “correct” key

problem: client can probe server:
I o�er someone else’s pub key, observe response
I pre-emptive signatures possible (in principle)

problem: server sees which key was used:
I and can prove it! ⇒ authentication not deniable
I fundamental to protocol

problem: server can act as honeypot:
I accept any key, even ones never seen before
I fundamental to protocol



SSH client SSH server
should I authenticate

with pub key 6c6c6568...?

no

should I authenticate
with pub key 73616664...?

no

...

yes

signature

problem: server can �ngerprint client:
I refuse all advertisements⇒ learn all keys
I can con�gure client to send only “correct” key

problem: client can probe server:
I o�er someone else’s pub key, observe response
I pre-emptive signatures possible (in principle)

problem: server sees which key was used:
I and can prove it! ⇒ authentication not deniable
I fundamental to protocol

problem: server can act as honeypot:
I accept any key, even ones never seen before
I fundamental to protocol



SSH client SSH server
should I authenticate
with Bob’s pub key?

yes/no

should I authenticate
with pub key 73616664...?

no

...

yes

signature

problem: server can �ngerprint client:
I refuse all advertisements⇒ learn all keys
I can con�gure client to send only “correct” key

problem: client can probe server:
I o�er someone else’s pub key, observe response
I pre-emptive signatures possible (in principle)

problem: server sees which key was used:
I and can prove it! ⇒ authentication not deniable
I fundamental to protocol

problem: server can act as honeypot:
I accept any key, even ones never seen before
I fundamental to protocol



SSH client SSH server
should I authenticate

with pub key 6c6c6568...?

no

should I authenticate
with pub key 73616664...?

no

...

yes

signature

problem: server can �ngerprint client:
I refuse all advertisements⇒ learn all keys
I can con�gure client to send only “correct” key

problem: client can probe server:
I o�er someone else’s pub key, observe response
I pre-emptive signatures possible (in principle)

problem: server sees which key was used:
I and can prove it! ⇒ authentication not deniable
I fundamental to protocol

problem: server can act as honeypot:
I accept any key, even ones never seen before
I fundamental to protocol



SSH client SSH server
should I authenticate

with pub key 6c6c6568...?
yes

should I authenticate
with pub key 73616664...?

no

...

yes

signature

problem: server can �ngerprint client:
I refuse all advertisements⇒ learn all keys
I can con�gure client to send only “correct” key

problem: client can probe server:
I o�er someone else’s pub key, observe response
I pre-emptive signatures possible (in principle)

problem: server sees which key was used:
I and can prove it! ⇒ authentication not deniable
I fundamental to protocol

problem: server can act as honeypot:
I accept any key, even ones never seen before
I fundamental to protocol



goals of this work

1 server & client should learn minimal information

2 authenticate with respect to existing SSH keys

3 minimize reliance on per-site con�guration

https://github.blog/2021-09-
01-improving-git-protocol-se

curity-github/

https://github.blog/2021-09-01-improving-git-protocol-security-github/


goals of this work

1 server & client should learn minimal information

2 authenticate with respect to existing SSH keys

3 minimize reliance on per-site con�guration

https://github.blog/2021-09-
01-improving-git-protocol-se

curity-github/

https://github.blog/2021-09-01-improving-git-protocol-security-github/


goals of this work

1 server & client should learn minimal information

2 authenticate with respect to existing SSH keys

3 minimize reliance on per-site con�guration

https://github.blog/2021-09-
01-improving-git-protocol-se

curity-github/

https://github.blog/2021-09-01-improving-git-protocol-security-github/


goals of this work

1 server & client should learn minimal information

2 authenticate with respect to existing SSH keys

3 minimize reliance on per-site con�guration

https://github.blog/2021-09-
01-improving-git-protocol-se

curity-github/

https://github.blog/2021-09-01-improving-git-protocol-security-github/


our new authentication method: big picture

client server

our protocol
sk1, sk4, sk9 pk1, pk2, . . . , pk6

server has 6 keys,
including pk1 and pk4

client has 3 keys, including
at least one of {sk1, . . . , sk6}

I any mixture of existing RSA, ECDSA, EdDSA keys,
in a single authentication attempt

I does not depend on site-speci�c con�guration;
safe to use all keys in every authentication attempts

I client won’t connect unless server knows and explicitly
includes one of client’s keys



our new authentication method: big picture

client server

our protocol
sk1, sk4, sk9 pk1, pk2, . . . , pk6

server has 6 keys,
including pk1 and pk4

client has 3 keys, including
at least one of {sk1, . . . , sk6}

I any mixture of existing RSA, ECDSA, EdDSA keys,
in a single authentication attempt

I does not depend on site-speci�c con�guration;
safe to use all keys in every authentication attempts

I client won’t connect unless server knows and explicitly
includes one of client’s keys



our new authentication method: big picture

client server

our protocol
sk1, sk4, sk9 pk1, pk2, . . . , pk6

server has 6 keys,
including pk1 and pk4

client has 3 keys, including
at least one of {sk1, . . . , sk6}

I any mixture of existing RSA, ECDSA, EdDSA keys,
in a single authentication attempt

I does not depend on site-speci�c con�guration;
safe to use all keys in every authentication attempts

I client won’t connect unless server knows and explicitly
includes one of client’s keys



our new authentication method: big picture

client server

our protocol
sk1, sk4, sk9 pk1, pk2, . . . , pk6

server has 6 keys,
including pk1 and pk4

client has 3 keys, including
at least one of {sk1, . . . , sk6}

I any mixture of existing RSA, ECDSA, EdDSA keys,
in a single authentication attempt

I does not depend on site-speci�c con�guration;
safe to use all keys in every authentication attempts

I client won’t connect unless server knows and explicitly
includes one of client’s keys



our new authentication method: big picture

client server

our protocol
sk1, sk4, sk9 pk1, pk2, . . . , pk6

server has 6 keys,
including pk1 and pk4

client has 3 keys, including
at least one of {sk1, . . . , sk6}

I any mixture of existing RSA, ECDSA, EdDSA keys,
in a single authentication attempt

I does not depend on site-speci�c con�guration;
safe to use all keys in every authentication attempts

I client won’t connect unless server knows and explicitly
includes one of client’s keys



technical overview

& contributions

client (with {ski}i): server (with {pkj}j):

c, {mj}j ← Enc
(
{pkj}j

) address ciphertext to {pkj}j ;
skj decrypts c to mj ;
c hides pkj recipients

1. anonymous multi-KEM

c{
m̂i := Dec(ski, c)

}
i

PSI

{mj}j
{m̂i}i each party has set of items;

client learns intersection;
server learns whether empty

2. private set intersection

{m̂i}i ∩ {mj}j ∩ = ∅?

single MKEM construction sup-

porting RSA, ECDSA, & EdDSA

add “proof of nonempty inter-

section” to [RosulekTrieu21] PSI

+ full UC security analysis



technical overview

& contributions

client (with {ski}i): server (with {pkj}j):

c, {mj}j ← Enc
(
{pkj}j

) address ciphertext to {pkj}j ;
skj decrypts c to mj ;
c hides pkj recipients

1. anonymous multi-KEM

c{
m̂i := Dec(ski, c)

}
i

PSI

{mj}j
{m̂i}i each party has set of items;

client learns intersection;
server learns whether empty

2. private set intersection

{m̂i}i ∩ {mj}j ∩ = ∅?

single MKEM construction sup-

porting RSA, ECDSA, & EdDSA

add “proof of nonempty inter-

section” to [RosulekTrieu21] PSI

+ full UC security analysis



technical overview

& contributions

client (with {ski}i): server (with {pkj}j):

c, {mj}j ← Enc
(
{pkj}j

) address ciphertext to {pkj}j ;
skj decrypts c to mj ;
c hides pkj recipients

1. anonymous multi-KEM

c

{
m̂i := Dec(ski, c)

}
i

PSI

{mj}j
{m̂i}i each party has set of items;

client learns intersection;
server learns whether empty

2. private set intersection

{m̂i}i ∩ {mj}j ∩ = ∅?

single MKEM construction sup-

porting RSA, ECDSA, & EdDSA

add “proof of nonempty inter-

section” to [RosulekTrieu21] PSI

+ full UC security analysis



technical overview

& contributions

client (with {ski}i): server (with {pkj}j):

c, {mj}j ← Enc
(
{pkj}j

) address ciphertext to {pkj}j ;
skj decrypts c to mj ;
c hides pkj recipients

1. anonymous multi-KEM

c{
m̂i := Dec(ski, c)

}
i

PSI

{mj}j
{m̂i}i each party has set of items;

client learns intersection;
server learns whether empty

2. private set intersection

{m̂i}i ∩ {mj}j ∩ = ∅?

single MKEM construction sup-

porting RSA, ECDSA, & EdDSA

add “proof of nonempty inter-

section” to [RosulekTrieu21] PSI

+ full UC security analysis



technical overview

& contributions

client (with {ski}i): server (with {pkj}j):

c, {mj}j ← Enc
(
{pkj}j

) address ciphertext to {pkj}j ;
skj decrypts c to mj ;
c hides pkj recipients

1. anonymous multi-KEM

c{
m̂i := Dec(ski, c)

}
i

PSI

{mj}j
{m̂i}i each party has set of items;

client learns intersection;
server learns whether empty

2. private set intersection

{m̂i}i ∩ {mj}j ∩ = ∅?

single MKEM construction sup-

porting RSA, ECDSA, & EdDSA

add “proof of nonempty inter-

section” to [RosulekTrieu21] PSI

+ full UC security analysis



technical overview

& contributions

client (with {ski}i): server (with {pkj}j):

c, {mj}j ← Enc
(
{pkj}j

) address ciphertext to {pkj}j ;
skj decrypts c to mj ;
c hides pkj recipients

1. anonymous multi-KEM

c{
m̂i := Dec(ski, c)

}
i

PSI

{mj}j
{m̂i}i each party has set of items;

client learns intersection;

server learns whether empty

2. private set intersection

{m̂i}i ∩ {mj}j

∩ = ∅?

single MKEM construction sup-

porting RSA, ECDSA, & EdDSA

add “proof of nonempty inter-

section” to [RosulekTrieu21] PSI

+ full UC security analysis



technical overview

& contributions

client (with {ski}i): server (with {pkj}j):

c, {mj}j ← Enc
(
{pkj}j

) address ciphertext to {pkj}j ;
skj decrypts c to mj ;
c hides pkj recipients

1. anonymous multi-KEM

c{
m̂i := Dec(ski, c)

}
i

PSI

{mj}j
{m̂i}i each party has set of items;

client learns intersection;
server learns whether empty

2. private set intersection

{m̂i}i ∩ {mj}j ∩ = ∅?

single MKEM construction sup-

porting RSA, ECDSA, & EdDSA

add “proof of nonempty inter-

section” to [RosulekTrieu21] PSI

+ full UC security analysis



technical overview & contributions

client (with {ski}i): server (with {pkj}j):

c, {mj}j ← Enc
(
{pkj}j

) address ciphertext to {pkj}j ;
skj decrypts c to mj ;
c hides pkj recipients

1. anonymous multi-KEM

c{
m̂i := Dec(ski, c)

}
i

PSI

{mj}j
{m̂i}i each party has set of items;

client learns intersection;
server learns whether empty

2. private set intersection

{m̂i}i ∩ {mj}j ∩ = ∅?

single MKEM construction sup-

porting RSA, ECDSA, & EdDSA

add “proof of nonempty inter-

section” to [RosulekTrieu21] PSI

+ full UC security analysis



technical overview & contributions

client (with {ski}i): server (with {pkj}j):

c, {mj}j ← Enc
(
{pkj}j

) address ciphertext to {pkj}j ;
skj decrypts c to mj ;
c hides pkj recipients

1. anonymous multi-KEM

c{
m̂i := Dec(ski, c)

}
i

PSI

{mj}j
{m̂i}i each party has set of items;

client learns intersection;
server learns whether empty

2. private set intersection

{m̂i}i ∩ {mj}j ∩ = ∅?

single MKEM construction sup-

porting RSA, ECDSA, & EdDSA

add “proof of nonempty inter-

section” to [RosulekTrieu21] PSI

+ full UC security analysis



technical overview & contributions

client (with {ski}i): server (with {pkj}j):

c, {mj}j ← Enc
(
{pkj}j

) address ciphertext to {pkj}j ;
skj decrypts c to mj ;
c hides pkj recipients

1. anonymous multi-KEM

c{
m̂i := Dec(ski, c)

}
i

PSI

{mj}j
{m̂i}i each party has set of items;

client learns intersection;
server learns whether empty

2. private set intersection

{m̂i}i ∩ {mj}j ∩ = ∅?

single MKEM construction sup-

porting RSA, ECDSA, & EdDSA

add “proof of nonempty inter-

section” to [RosulekTrieu21] PSI

+ full UC security analysis



concrete performance (in OpenSSH):

# of keys RSA keys only {EC,Ed}DSA keys only
(worst case for us) (best case for us)

client server time comm time comm

5 10 60 ms 12 kB 9 ms 8 kB

20 100 320 ms 53 kB 28 ms 12 kB

20 1000 1200 ms 460 kB 214 ms 41 kB

github.com/osu-crypto/PSIPK-ssh 2 commodity desktop computers on LAN

https://github.com/osu-crypto/PSIPK-ssh


concrete performance (in OpenSSH):

# of keys RSA keys only {EC,Ed}DSA keys only
(worst case for us) (best case for us)

client server time comm time comm

5 10 60 ms 12 kB 9 ms 8 kB

20 100 320 ms 53 kB 28 ms 12 kB

20 1000 1200 ms 460 kB 214 ms 41 kB

github.com/osu-crypto/PSIPK-ssh 2 commodity desktop computers on LAN

https://github.com/osu-crypto/PSIPK-ssh


concrete performance (in OpenSSH):

# of keys RSA keys only {EC,Ed}DSA keys only
(worst case for us) (best case for us)

client server time comm time comm

5 10 60 ms 12 kB 9 ms 8 kB

20 100 320 ms 53 kB 28 ms 12 kB

20 1000 1200 ms 460 kB 214 ms 41 kB

github.com/osu-crypto/PSIPK-ssh 2 commodity desktop computers on LAN

https://github.com/osu-crypto/PSIPK-ssh


concrete performance (in OpenSSH):

# of keys RSA keys only {EC,Ed}DSA keys only
(worst case for us) (best case for us)

client server time comm time comm

5 10 60 ms 12 kB 9 ms 8 kB

20 100 320 ms 53 kB 28 ms 12 kB

20 1000 1200 ms 460 kB 214 ms 41 kB

github.com/osu-crypto/PSIPK-ssh 2 commodity desktop computers on LAN

https://github.com/osu-crypto/PSIPK-ssh


client server

our protocol
set of secret keys set of “authorized” public keys

# of server keys;
identity of authorized keys

# of client keys;
were any of them authorized?

X e�cient, practical
X mixture of existing RSA & EC keys
X safe without special per-site con�guration

github.com/osu-crypto/PSIPK-ssh ia.cr/2022/740

thanks!

https://github.com/osu-crypto/PSIPK-ssh
https://ia.cr/2022/740


client server

our protocol
set of secret keys set of “authorized” public keys

# of server keys;
identity of authorized keys

# of client keys;
were any of them authorized?

X e�cient, practical
X mixture of existing RSA & EC keys
X safe without special per-site con�guration

github.com/osu-crypto/PSIPK-ssh ia.cr/2022/740

thanks!

https://github.com/osu-crypto/PSIPK-ssh
https://ia.cr/2022/740


(backup slides)



github over SSH:

client github.com

authenticate server

username = git

negotiate choice of pk

authenticate

commit to repositoryname

??our
protocol X

I server must decide set of authorized keys
before running our protocol!

I server does not know repository name yet!

I use repository name as username



github over SSH:

client github.com

authenticate server

username = git

negotiate choice of pk

authenticate

commit to repositoryname

??

our
protocol X

I server must decide set of authorized keys
before running our protocol!

I server does not know repository name yet!

I use repository name as username



github over SSH:

client github.com

authenticate server

username = git

negotiate choice of pk

authenticate

commit to repositoryname

??

our
protocol X

I server must decide set of authorized keys
before running our protocol!

I server does not know repository name yet!

I use repository name as username



github over SSH:

client github.com

authenticate server

username = git

negotiate choice of pk

authenticate

commit to repositoryname

??

our
protocol X

I server must decide set of authorized keys
before running our protocol!

I server does not know repository name yet!

I use repository name as username



github over SSH:

client new.github.com

authenticate server

username = repositoryname

negotiate choice of pk

authenticate

commit

??

our
protocol X

I server must decide set of authorized keys
before running our protocol!

I server does not know repository name yet!

I use repository name as username



anonymous multi-KEM

address ciphertext to {pkj}j ;
skj decrypts c to mj ;
c hides pkj recipients

1. anonymous multi-KEM



the case of EdDSA/ECDSA

Alice: pkA = ga

Bob: pkB = gb

Charlie: pkC = gc

ciphertext = gr

Alice will decrypt to (pkA)r

Bob will decrypt to (pkB)r

Charlie will decrypt to (pkC)r

address ciphertext to {pkj}j ;
skj decrypts c to mj ;
c hides pkj recipients

1. anonymous multi-KEM

ciphertext hides set of recipients; even # of them!



the case of EdDSA/ECDSA

Alice: pkA = ga

Bob: pkB = gb

Charlie: pkC = gc

ciphertext = gr

Alice will decrypt to (pkA)r

Bob will decrypt to (pkB)r

Charlie will decrypt to (pkC)r

address ciphertext to {pkj}j ;
skj decrypts c to mj ;
c hides pkj recipients

1. anonymous multi-KEM

ciphertext hides set of recipients; even # of them!



the case of EdDSA/ECDSA

Alice: pkA = ga

Bob: pkB = gb

Charlie: pkC = gc

ciphertext = gr

Alice will decrypt to (pkA)r

Bob will decrypt to (pkB)r

Charlie will decrypt to (pkC)r

address ciphertext to {pkj}j ;
skj decrypts c to mj ;
c hides pkj recipients

1. anonymous multi-KEM

ciphertext hides set of recipients; even # of them!



the case of EdDSA/ECDSA

Alice: pkA = ga

Bob: pkB = gb

Charlie: pkC = gc

ciphertext = gr

Alice will decrypt to (pkA)r

Bob will decrypt to (pkB)r

Charlie will decrypt to (pkC)r

address ciphertext to {pkj}j ;
skj decrypts c to mj ;
c hides pkj recipients

1. anonymous multi-KEM

ciphertext hides set of recipients; even # of them!



the case of RSA

Alice: pkA = (NA, eA)
Bob: pkB = (NB, eB)

Charlie: pkC = (NC, eC)

encrypt (rA)eA mod NA

encrypt (rB)eB mod NB

encrypt (rC)eC mod NC

interpolate poly P :
P (NA) = (rA)eA
P (NB) = (rB)eB
P (NC) = (rC)eC

ciphertext = P

address ciphertext to {pkj}j ;
skj decrypts c to mj ;
c hides pkj recipients

1. anonymous multi-KEM



the case of RSA

Alice: pkA = (NA, eA)
Bob: pkB = (NB, eB)

Charlie: pkC = (NC, eC) encrypt (rA)eA mod NA

encrypt (rB)eB mod NB

encrypt (rC)eC mod NC

interpolate poly P :
P (NA) = (rA)eA
P (NB) = (rB)eB
P (NC) = (rC)eC

ciphertext = P

address ciphertext to {pkj}j ;
skj decrypts c to mj ;
c hides pkj recipients

1. anonymous multi-KEM



the case of RSA

Alice: pkA = (NA, eA)
Bob: pkB = (NB, eB)

Charlie: pkC = (NC, eC) encrypt (rA)eA mod NA

encrypt (rB)eB mod NB

encrypt (rC)eC mod NC

interpolate poly P :
P (NA) = (rA)eA
P (NB) = (rB)eB
P (NC) = (rC)eC

ciphertext = P

address ciphertext to {pkj}j ;
skj decrypts c to mj ;
c hides pkj recipients

1. anonymous multi-KEM



the case of RSA

Alice: pkA = (NA, eA)
Bob: pkB = (NB, eB)

Charlie: pkC = (NC, eC) encrypt (rA)eA mod NA

encrypt (rB)eB mod NB

encrypt (rC)eC mod NC

interpolate poly P :
P (NA) = (rA)eA
P (NB) = (rB)eB
P (NC) = (rC)eC

ciphertext = P

address ciphertext to {pkj}j ;
skj decrypts c to mj ;
c hides pkj recipients

1. anonymous multi-KEM



PSI with proof of nonempty intersection

each party has set of items;
client learns intersection;
server learns whether empty

2. private set intersection



oblivious PRF (OPRF) paradigm for PSI
[FreedmanIshaiPinkasReingold05]

Alice:
X = {x1, x2, . . .}

Bob:
Y = {y1, y2, . . .}

OPRF
x1, x2, . . .

F (x1), F (x2), . . .

random F (·)

F (y1), F (y2), . . .

Enc
(
F (x1), r

)
, Enc

(
F (x2), r

)
, . . .

H (r)

r



oblivious PRF (OPRF) paradigm for PSI
[FreedmanIshaiPinkasReingold05]

Alice:
X = {x1, x2, . . .}

Bob:
Y = {y1, y2, . . .}

OPRF
x1, x2, . . .

F (x1), F (x2), . . .

random F (·)

F (y1), F (y2), . . .

Enc
(
F (x1), r

)
, Enc

(
F (x2), r

)
, . . .

H (r)

r



oblivious PRF (OPRF) paradigm for PSI
[FreedmanIshaiPinkasReingold05]

Alice:
X = {x1, x2, . . .}

Bob:
Y = {y1, y2, . . .}

OPRF
x1, x2, . . .

F (x1), F (x2), . . .

random F (·)

F (y1), F (y2), . . .

Enc
(
F (x1), r

)
, Enc

(
F (x2), r

)
, . . .

H (r)

r



oblivious PRF (OPRF) paradigm for PSI
[FreedmanIshaiPinkasReingold05]

Alice:
X = {x1, x2, . . .}

Bob:
Y = {y1, y2, . . .}

OPRF
x1, x2, . . .

F (x1), F (x2), . . .

random F (·)

F (y1), F (y2), . . .

Enc
(
F (x1), r

)
, Enc

(
F (x2), r

)
, . . .

H (r)

r



oblivious PRF (OPRF) paradigm for PSI
[FreedmanIshaiPinkasReingold05]

Alice:
X = {x1, x2, . . .}

Bob:
Y = {y1, y2, . . .}

OPRF
x1, x2, . . .

F (x1), F (x2), . . .

random F (·)

F (y1), F (y2), . . .

Enc
(
F (x1), r

)
, Enc

(
F (x2), r

)
, . . .

H (r)

r



oblivious PRF (OPRF) paradigm for PSI
[FreedmanIshaiPinkasReingold05]

Alice:
X = {x1, x2, . . .}

Bob:
Y = {y1, y2, . . .}

OPRF
x1, x2, . . .

F (x1), F (x2), . . .

random F (·)

F (y1), F (y2), . . .

Enc
(
F (x1), r

)
, Enc

(
F (x2), r

)
, . . .

H (r)

r



oblivious PRF (OPRF) paradigm for PSI
[FreedmanIshaiPinkasReingold05]

Alice:
X = {x1, x2, . . .}

Bob:
Y = {y1, y2, . . .}

OPRF
x1, x2, . . .

F (x1), F (x2), . . .

random F (·)

F (y1), F (y2), . . .

Enc
(
F (x1), r

)
, Enc

(
F (x2), r

)
, . . .

H (r)

r


